

E-METHANOL-NEW GREEN FUEL FOR MARITIME AND OTHER SECTORS

Puertollano 20 MW Green H2 Plant

GROUP NEOENERGIA

Iberdrola Group introduction

5 times less than industry average

Largest 100% private integrated utility in Europe with >€90 Bn market cap in 2025

⁹ According to the report "Pexapark Renewables Market Outlook 2025" ⁽²⁾ According to the European Commission, based on 2023 figures

A World Leader on Renewable Energy

A diversified renewable energy portfolio of 44,478 MW 2.6 GW installed (715 MW offshore) in 2024 and 83 TWh annual production (+5% vs 2023)

Who is Neoenergia?

Neoenergia in a nutshell


```
Distribution
5 electrical utilities
```


Transmission¹ 18 Concessions

Renewable Energy

7 hydropower plants
37 wind farms in operation
7 farms in construction
1 solar plant in operation
1 solar plant in construction

Free Market (Liberalized)

11.2 TWh sold to final costumers1.7 thousand clients with distributed solar generation

IBERDROLA H2

Iberdrola-Solutions in Decarbonization

Green H2-The complement to electrification

There are, however, certain sectors in which electrification might not be enough to meet decarbonization targets

Green Hydrogen makes sense as a complement to electrification in those sectors and uses considered hard-to-abate, or as a green raw material feedstock

And the greener, the better. Iberdrola is not supporting any blue H2 project

Green Hydrogen & Derivatives:

Crucial to decarbonize the "hard to abate" sectors

Short-term applications		
Local Production at consumption point	Global Scale Green H2 Derivatives	Other Applications
Industrial raw materials	Niche Premium Chemistry & Fertilizers	Heavy mobility
1 st Priority: replacing grey H2 with green H2 in current uses	New uses: hydrogen carrier, bunkering and e-SAF	High Temperature processes

Spearheading the Green Hydrogen development

FIRST MOVER

3 plants operating in Spain Mastering electricity supply for RFNBO H2 since 2022

ALLIANCE bp

First 25 MW project under construction (COD 2026)

2 successful projects in HAR 1: Whitelee 10 MW and Cromarty 15 MW

Puertollano 20 MW plant One of the largest electrolyzer in Europe, operating since 2023

AUSTRALIA

Supporting green minerals and developing opportunities in Townsville

1 HRS under construction 4 projects for industry (ANEEL) Working on derivatives

H2 DERIVATIVES

Green NH3 and e-Methanol, new business lines to support our partners' decarbonization

Iberdrola is already operating three Green H2 plants

Green H2 plant in Benicarló

🚺 Iberdrola

- Operating since January 2025
- PEM ELY from Cummins
- Capacity: 100 tpa
- 100% decarbonization of grey H2 consumption onsite

- Operating since 2023
- PEM ELY from NEL
- Capacity: 3,000 tpa for fertilizer's industry
- H2 plant connected to a 100 MW solar PV
- Part of a larger IPCEI project

- Green H2 station in Barcelona 2.5 MW
- Operating since 2022
- PEM ELY from Cummins
- Capacity: 400 tpa for buses
- 46 buses charged every day
- 2nd phase 5 MW

Progressing in our Green Hydrogen Alliance with bp

Iberdrola & bp formed a 50:50 joint venture in Spain to develop Green H2 projects together. FID taken for the 1st one and preparing scale-up beyond 100 MW

Location:	25 MW electrolyzer	RES: 200 GWh/year	Under construction	Funding: €15 Million
bp/s refinery (Castellón)	PFM - Plug Power	Green H2: 2 800 tpa		(Spanish subsidy)
op stennery (castenon)	i Elim i lugi owei	Green 112. 2,000 tpa	000.022020	

bp's refinery in Serrallo Industrial Park, Castellón

25 MW mock-up plant – 5 modules of 5 MW

Feb 6th, 2025: Construction starts for 25 MW project

After building reality in H2, derivatives are the next step

Gaining scale: from onsite projects to the World - green ammonia & e-methanol

(() Iberdrola

Iberdrola's Project Delivery: Expertise & Capabilities

Historical Background

- ✓ 25 years of experience designing, engineering and constructing, worldwide
- ✓ +40 thermal power plants,
 5 biomass plants, 4 nuclear plants, +10 hydroelectric plants....
- ✓ Both for Iberdrola Group and 3rd parties
- ✓ In-house Team+100 people
- ✓ Global capabilities

Green H2 Background

3

9

UK, Unites States and Brazil Capacities:

Capacities: 11 Projects ≤ 25MW 5 Projects ≥ 100MW

OPERATIONAL PLANTS: 24 MW Engineering, design & construction UNDER CONSTRUCTION: 25 MW Engineering, design & construction

GREEN H2 FEED

Electrolysers tech assessment and Engineering/Owner's Engineering FEED 3 DERIVATIVES Pre-Feed Engineering, design

> 2 Green Ammonia and 1 eMethanol

NEOENERGIA H2

E-METHANOL-NEW GREEN FUEL FOR MARITIME AND OTHER SECTORS

Hydrogen in Brazil

93% of renewable generation participation in the Brazilian electricity matrix in 2023

Robust electrical sector Renewable energy in abundance and at competitive prices RFNBO compliance (EU RED III)

> Enables the world's most competitive Green Hydrogen and derivatives...but WITH

Legal and fiscal framework

GOVERNO FEDERAL

Iberdrola

- Approval of the Strategic Call n° 23 (P&D ANEEL)
- Law n° 14.990/24 (PHBC)
- Law n° 14.948/24 (Marco Legal do H2BC)
- Law n° 14.993/24 (Programa Combustível do Futuro)
- Law n° 15.042/24 (Mercado de Carbono)

Programa de Desenvolvimento do Hidrogênio de Baixa Emissão de Carbono – PHBC

R\$ 18,3 billions in tax incentives Allows accumulation of benefits It will also include exportable products

Best possible framework

Under development in Brazil

- ✓ Dedicated green H2 team focused on developing local opportunities
- ✓ Renewable Energy portfolio 4GW

Hydro
2,200 MWOnshore Wind
1,600 MWSolar PV
150 MWProduction 2024
11.2 TWh/year

- ✓ PRE-FEED under development for green ammonia and e-methanol plants
- ✓ 4 Green H2 projects submitted to ANEEL Strategic Call

Working for FID with specific offtake partners

- ✓ Big-scale project under development
 - ✓ H2 hub for industry
 - ✓ Green NH3 and E-methanol for exportation

Advanced negotiations with **buyers willing to pay a premium** for green methanol in Europe

🚧 Iberdrola

Reality - Green Hydrogen Refueling Station

- ✓ R&D project in Brasilia (ANEEL supported)
- ✓ First HRS capable of supplying at 2 different pressures in Brazil
- ✓ Located in the political center of Brazil
- ✓ Hub dedicated to the development of technology and dissemination of knowledge about green H2
- ✓ About to start erection
- ✓ COD 2025

Description - Description -

🚧 Iberdrola

E-Methanol

e-Methanol: sustainable solution

Source: IRENA Innovation Outlook: Renewable Methanol, 2021 / Massachusetts Institute of Technology

Learning on Methanol – Market subsectors in EU

Most of the expected demand in Europe for methanol will come from new sectors (maritime and aviation)

Total H2 demand by subsector in Europa (2022)

Refineries 50%	← 8,7 Mt/year →	Using H2 to reduce sulphur content in diesel fuelsMain hydrogen applications in refineries:HydrocrackingHydrocrackingHydrotreatingHydrogenation	
Ammonia 29%			
Methanol and other chemical 13%		Main hydrogen applications in ammonia:Traditional applicationsRefrigerantCleaning productsFertilizers	
Other 5%		H2 carrier Emerging applications	
Energy 4%		Image: Second strain Image: Second strain Main hydrogen applications in methanol: Image: Second strain	
Transport <1%		Chemical Precursors Additives Bunkering Traditional applications eSAF	

🚺 Iberdrola

Key Challenges for E-Methanol Projects

Same molecule, but completely NEW PRODUCT apart from bio/blue/gray

NEW promising APPLICATIONS that need its own benchmark to ensure sustainable long-term projects

e-Methanol: Green Meiga project in Spain

- Green H2+CO2 to produce e-methanol in Spain with COD in 2028
- Targeted offtakers in chemicals, bunkering and aviation
- Unique integrated plant, local Priority Business Initiative
- Innovation lab: different electrolyzers, advanced CO2-capture system and DAC demonstration facility
- Biogenic CO2 captured from biomass boilers

The most competitive e-methanol project in Iberia

Maritime Sector

Market Introduction and Key Players

Marine Fuels global context

- Shipping sector is very dependent on heavy fuel oil (HFO), marine diesel oil (MDO) and very low sulphur oil (VLSFO)
- ✓ It represents ~3% of global GHG emissions (heavy transport accounts for 85%) and projections indicate further growth
- New regulation launched in 2023 for alternative fuels adoption brings opportunities for e-methanol and green ammonia (Fuel EU Maritime)

Overview of GHG intensity of each fuel – Provisional Calculations

✓ Alternative clean fuels to comply with regulation include biofuels, renewable diesel (limited feedstock), bio/e-methanol and green/blue ammonia

Complex regulatory landscape

European level regulation

Regulation-IMO, ETS and FueIEU Maritime

International Maritime Organisation (IMO)

- 2023 IMO Strategy on Reduction of GHG Emissions from Ships: indicative check-points: 20% by 2030, 70% by 2040 and net-zero by 2050
- All ships need to measure carbon intensity (but no mandates, neither penalties)
- By 2025, emissions pricing mechanism to be adopted (into force in 2027)

European Trading Scheme (EU ETS)

- Since Jan'24, EU ETS extended to cover CO2 emissions from large ships (>5,000 gross tones) entering EU ports, regardless of the flag they fly
- No free allocation \rightarrow ship owners must acquire emission allowances (100% on routes within EU, 50% on routes in/out EU)
- Targets: 40% of emissions in 2024, 70% in 2025 and 100% from 2026

FuelEU Maritime

 \checkmark

- Target: increase share of renewable and low-carbon fuels in the fuel mix
- Reduction of GHG intensity of energy (CO2 equivalent/unit).
 - Ships above 5,000 gross tones \checkmark
 - ✓ 100% on voyages within EU and 50% on voyages in/out EU
- Progressive GHG reduction: from 2% in 2025 to 80% by 2050

Annual average carbon intensity reduction compared to the average in 2020

- Allows pooling among fleet and selling "credits"
- From 2030: mandate for onshore power supply at EU ports

RENBO Incentives

- RFNBO Multiplier of 2 in terms of energy (2025-2034)
- Subtarget 2% of RFNBO could be applicable from 2034 (if RFNBO share in maritime fuel mix<1% by 2031)
- Non-compliance cost could be higher than e-methanol, but there are other cheaper alternatives (e.g. biofuels)

ifference betwee Penalties for non-compliance **GHG** target and GHG intensit attained Obligated parties: shipowner / [(Compliance balance)] X 2,400 operator GHGIE_{actual} X 41,000 Potential denial of entry into the EU ports **GHG** inten 41.000 MJ attaine 1 metric tor of VLSFO

Demand for Green Fuels

Growth of alternative fuel vessels

- Vessel operators will need to comply with emissions reduction targets to avoid paying penalties.
- Fuels such as LNG, LPG or biofuels will be able to meet the target until 2040

Potential niche market

Some end users like car manufactures and consumer goods are requesting to have free emission shipping for their products

Global Marine fuel demand by fuel type

In 2040, maritime transport will require 12 Mt of green H2 for use as synthetic fuels: 50% ammonia (~45 Mt NH3 & >675 TWh RE) / 20% methanol (~20 Mt CH3OH & > 240 TWh RE)⁽¹⁾

- ✓ Ammonia is more cost competitive but issues with toxicity, engines and bunkering terminal's availability
- Methanol is more technology-ready and can be stored in any port but issues with biogenic CO2 scalability

(92040 estimations on ammonia, methanol and renewable power based on Iberdrola's projects

Deals Announced

Leading shipping companies are adopting methanol as a marine fuel

Shipping company	Sector	Net zero target	Methanol vessels	Timeline
X MAERSK	Container	2040	42	2023-27
🛞 EVERGREEN	Container	2050	24	2026-27
CMA CGM	Container Tanker	2050	24	2025-27
COSCO	Container Bulk carrier	2060	22	2026-28
	Container	2050	20	2025-26
• Wallenius Wilhelmsen	Container	2040	14	2026-28
X DFDS	Container Bulk carrier	2050	10	2024-25

Growth of methanol

As of January 2025, Methanol Institute's database tracks 220 projects globally, with anticipated capacity of 44 Mt by 2030: 18.6 Mt e-methanol, 15.4 Mt biomethanol, 10.1 Mt blue methanol

- OCI expects annual increase in demand of ~7 Mt of methanol between 2024-2028 to fuel these new vessels. Equivalent to >105 TWh of renewable energy.
- Maersk will need 5Mt of green methanol/ammonia by 2030 and 20Mt by 2040 but shows very limited willingness to pay...

An average vessel could consume between 20-50kt of methanol per year intra EU Approx. 100kt consumption on a route from Brazil to Europe

Opportunities - ZEMBA

The Zero Emissions Buyer Alliance is a buyers' group within the maritime sector with the mission to accelerate deployment of zero-emission shipping solutions, enable economies of scale for freight buyers and suppliers, and help freight buyers maximize emissions reduction potential 1st tender launched in 2024:

- 2 years contract from 2025 to collectively reduce 82,000 metric tonnes of CO2 with a book and claim system.
- Awarded to Hapag-Lloyd
- Gasum will deliver waste-based liquefied biomethane -bio-LNGto Hapag-Lloyd's container vessels during the tender period

ZEMBA aggregates cargo shipping demand from 40 companies that want to decarbonize their transport: Amazon, Bauhaus, Electrolux, IKEA, Levi Strauss & Co., Meta, Mondelēz, New Balance, Nike, Pernod Ricard, Philips, Schneider Electric, SEKO... 2nd tender launched in 2025:

- Volume 180kt e-fuels over 5 years (~36kt/year)
- COD from 2027 with 3-5 years contract
- Bid period January-March 2025
- Additionality needed: carriers cannot use the e-fuel used for the tender to comply with FuelEUMaritime or EU ETS

Summary-Maritime Sector

Introduction

- International shipping trade accounts for 90% of total volume of goods and 60% of its total value (approx 112.000 fleets)
- Difficult business to regulate, standardize and modernize
- Several operators with different sizes and vessel types/uses, operating diverse routes
- Cyclical and volatile industry, heavily capital intensive with high inherent risks
- Affected by global economy, speculation from some stakeholders, and geopolitics

Market

- Conventional bunker fuel market of ~275Mt in 2024, with 50 Mt in Europe
- In the goods trade, the top 10 container lines control 85% of the market
- Low-willingness to pay due to reduced operating margins and high impact of fuel costs
- Cheapest mode of transport (0,3p to 2,5€ cost of coffe)
- Niche opportunities, just a few companies asking for clean transportation for their highvalue products

Regulation

- Complex regulatory framework
- FuelEU Maritime sets requirement for reduction of GHG intensity of energy
- Non-compliance means financial penalty and potential denial of entry to the EU
- But confusing landscape of fuels with several factors related to emissions accounting
- Free ETS allocation ends in 2026
- Guidelines from IMO (but no mandates) to meet the net zero ambition by 2050

e-methanol demand

+360 dual-fuel methanol vessels operational and ordered First e-methanol bunker contracts to be signed this year Average consumption 40ktpa MeOH on EU routes ZEMBA tender aggregating e-fuel demand 180ktp from 2027 Low willingness to pay but large volumes before 2030 Under the current standards, a mix of LNG and biofuels could be the most competitive solution until 2036 and, then blue NH3 dual-ships until 2044 and always green NH3

In order to incentivize e-fuels a x2 multiplier has been proposed Even with this, e-fuels could not be competitive before 2041

The multiplier would have to be set at higher values

30

Aviation Sector

Market Introduction and Key Players

Introduction

- Aviation represents ~2.5% of global GHG emissions (expected to grow)
- Conventional jet market reached 325 Mt in 2023
- Sector faces high pressure from media and passengers
- SAF identified as the key decarbonization solution

What is SAF?

SAF are **alternative fuels** produced from different **sustainable feedstocks** and routes that can be blended into kerosene (up to 100% in the future). Two types according to feedstocks:

- ✓ SAF from residues: feedstock used oils, fats, biomass, waste
- ✓ eSAF: produced via FT-to-jet (H2+CO) and methanol-to-jet (route under certification but ready before 2030)

SAF Market Perspectives

- SAF market reached 0.5Mt in 2023 (0.15% of total aviation fuel) expected to reach 1.5Mt in 2024
- Governments setting policies to encourage the uptake of SAF
- Challenges: availability of feedstocks + competition other applications + cost of SAF production (3-4 times fossil kerosene)
- Regulation Targets by 2030:
 - <u>Europe:</u> 6% SAF (4 Mt) + 1.2% eSAF(0.8Mt)
 - <u>UK</u>: 10% SAF (1.2 Mt) + 0.5% eSAF (0.06Mt)

Opportunity to trigger investments in H2 and e-methanol

Regulation-ReFuelEU Aviation

Objectives: foster the ramp-up of SAF deployment in the EU & guarantee a harmonized and level playing field in aviation

EU binding SAF & e-SAF quotas

- Blending mandate from 2025 with 2% SAF (up to 70% by 2050)
 - ✓ By 2030, this would mean **2.8Mt of SAF demand**
- From 2030, <u>1.2% eSAF sub-mandate:</u>
 - This would mean 0.8Mt eSAF (which relates to > 1.8 M tons of emethanol and >27 TWh renewable energy)
 - ✓ And >3,4 Mt eSAF by 2035 (>7.5 Mt of e-methanol and >112 TWh renewable energy)⁽¹⁾

Scope and Stakeholders' obligations

X

- **Fuel suppliers** \rightarrow gradually blend SAF with kerosene
- **Union airports** \rightarrow facilitate the access to SAF
 - **Airlines** \rightarrow uplift 90% of fuel required at Union airports

Strict unavoidable penalties

- ✓ Buy-out or trading of certificates are NOT allowed
- \checkmark Shortfall volumes to be compensated in subsequent years
- Proposed penalty > estimated e-SAF prices
- ✓ Irrespective of e-SAF price, **compliance is always beneficial**

Incentives

- ✓ Until 2030, 20M free allowances (EU ETS) to cover price difference between jet fuel and SAF (70% reimbursement for SAF, 95% for eSAF)
- ✓ SAF supplied under ReFuelEU also counts towards MS targets under REDIII (with a 1.2x multiplier for SAF and 1.5x multiplier for RFNBO)

eSAF routes

Conclusions

Analysis of sectors' attractiveness

Maritime Sector

Aviation Sector

- Clear, harmonised legal framework (some pending details)
 - RFNBO multiplier (and potential submandate)
 - No buy out possible
 - Targets from major shipping companies
 - Incentives: H2 Bank dedicated stream from 2024
 - Large volumes needed
- High-price sensitive sector
 - Replacement with LNG valid till 2040
 - Competition from other fuels / uses
 - Retrofitting/new engines required
 - Competition from China's methanol projects

- Clear, harmonised legal framework
- Specific targets + mandatory eSAF sub-mandate
- Severe penalties. No buy out possible
- Incentives: 20M free allowances till 2030
- High pressure on airlines (exposure +sustainability targets) and passengers' willingness to pay
- Large volumes needed
- Timings: mandates' impact only after 2030
- 7 years needed to build a FOAK SAF plant
- Methanol-2-jet route under certification process
- High eSAF costs

H2&Derivatives partnerships in Brasil

ONLY VIA COLLABORATION BETWEEN PRIVATE COMPANIES AND ADMINISTRATION

If you want to go fast, go alone. If you want to go far, go together

After building reality in H2, ready for large-scale projects

